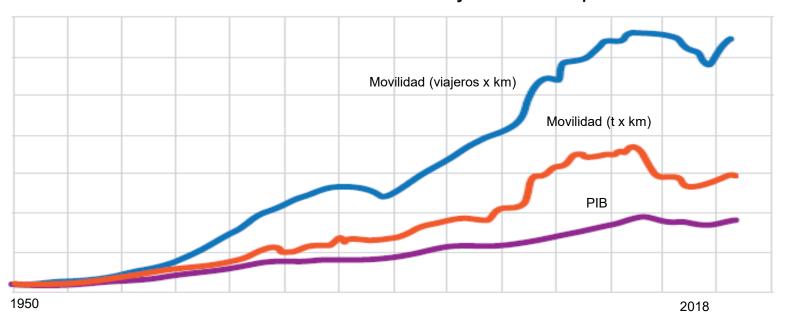
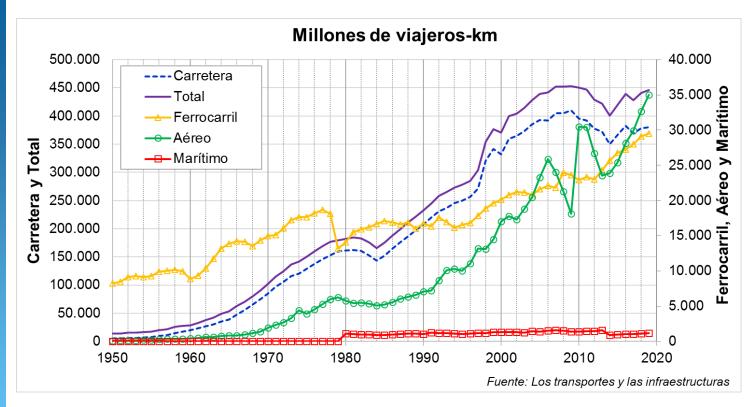
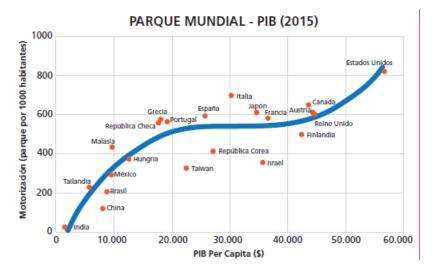


- La movilidad de personas y mercancías
- Problema y objetivos
- Cambio de paradigma de la movilidad
- Sistemas de propulsión
- Fuentes de energía
- Conclusiones

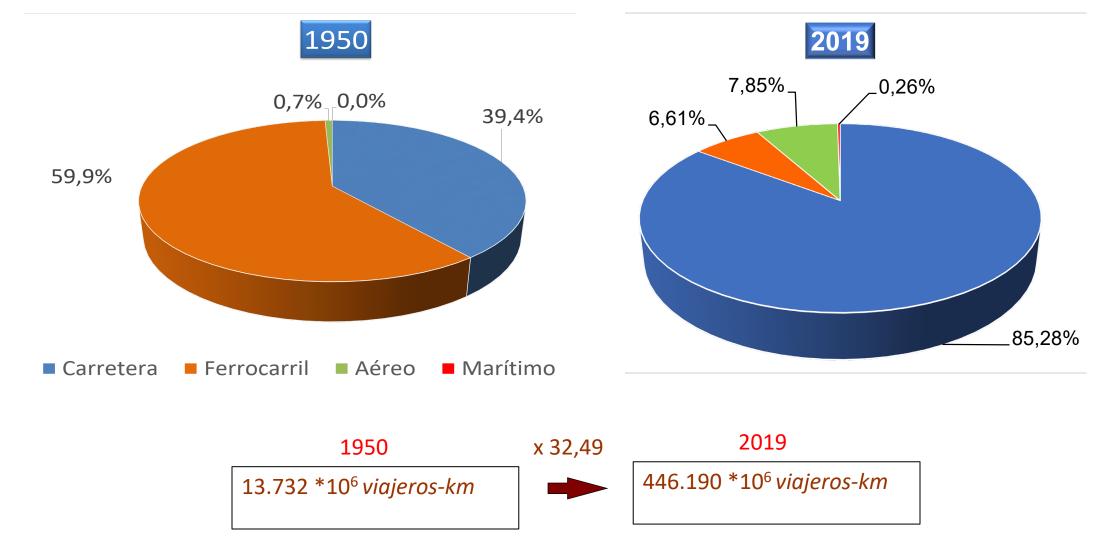

- ¿Qué necesidades resuelve el transporte?
 - Ha sido una necesidad de los seres humanos desde la prehistoria
 - Es causa y efecto del nivel de desarrollo de los pueblos.
- ¿Qué técnicas ha desarrollado el hombre para satisfacer esas necesidades?
 - El automóvil es el medio que más ha contribuido a la movilidad.

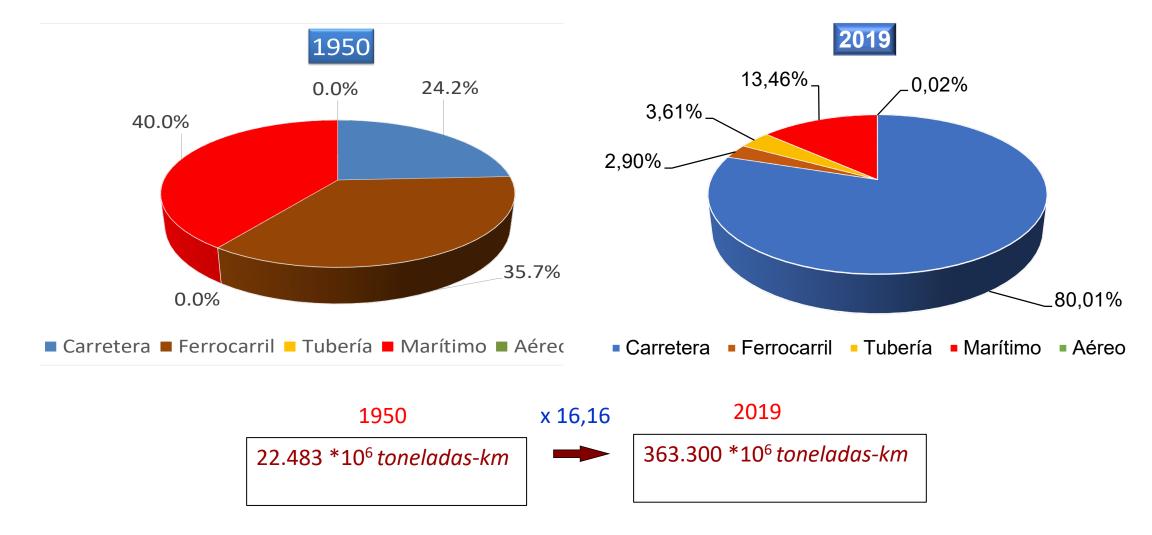
Evolución de la movilidad y PIB en España



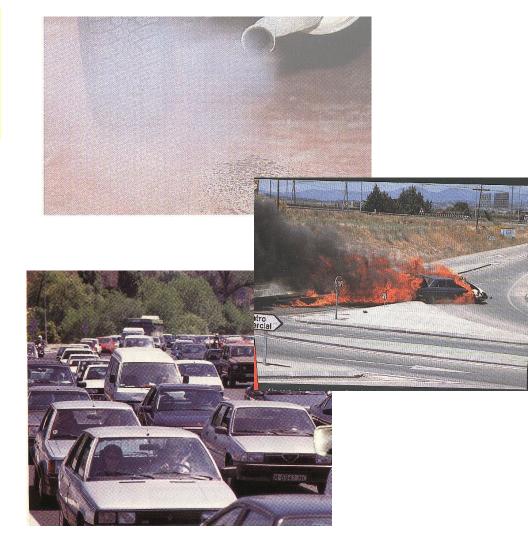

Madrid - Barcelona	Tiempo de viaje	Velocidad media
Año 1775	400 horas	2 km/h
Año 1847	80 horas	6 km/h
Año 2020	6,5 horas	100 km/h

INDUSTRIALES La movilidad de personas y mercancías





INDUSTRIALES La movilidad de personas y mercancías



La movilidad actual se ha convertido en un nuevo y enorme problema

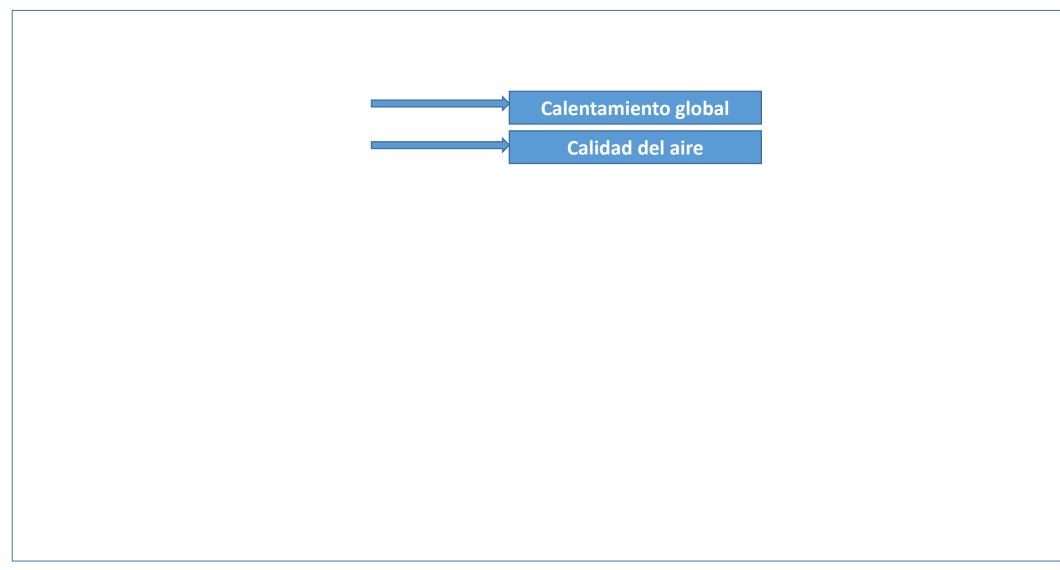
Junto a los grandes beneficios.... Importantes problemas: accidentes, congestión, calidad del aire, efecto invernadero, pérdidas de productividad, etc.

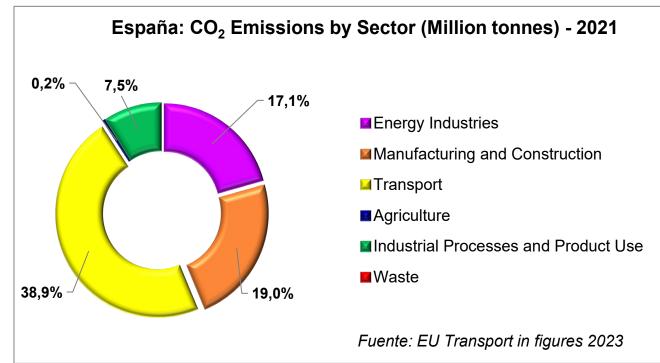
Para resolver el problema deben desplegarse soluciones técnicas y no técnicas de forma coordinada

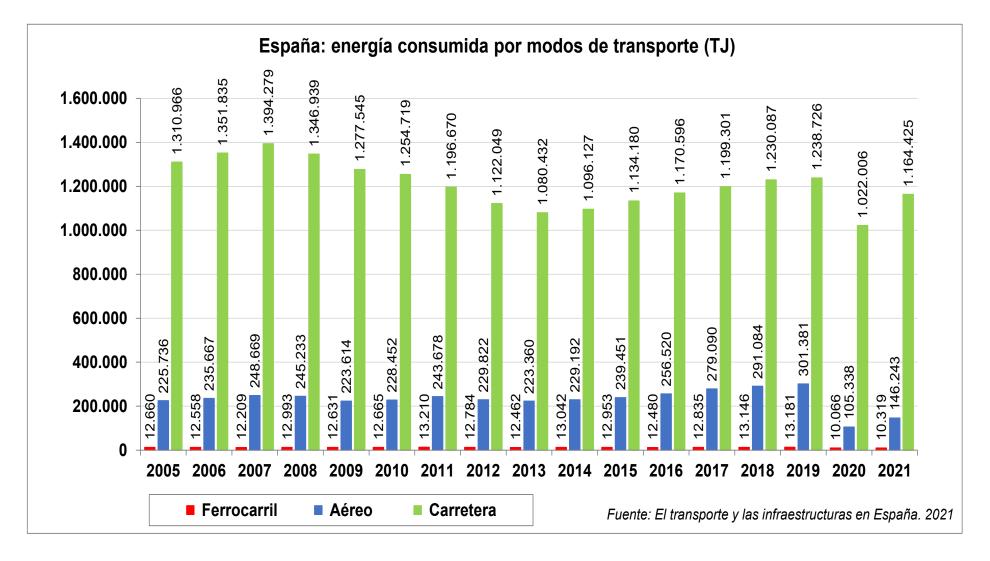
INDUSTRIALES Problema y objetivos

- Emisiones a la atmósfera
 - Contribuyen al calentamiento global
 - Afectan a salud pública
- Ruido
- Suelos y aguas
- Impacto visual y paisaje

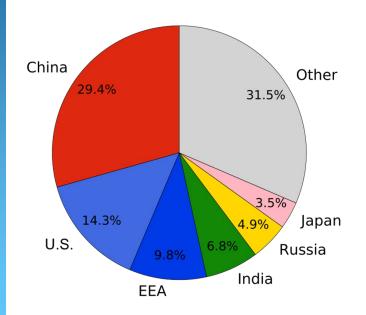
Bastante desacoplados







Industria



- En Europa (2019) (en ciclo de vida)
 - Transporte por carretera: 23,4%
 - Vehículos ligeros: 14,6%

% emisiones CO₂

Emisiones de gases de efecto invernadero

- Dióxido de carbono (CO₂)
 - Combustibles fósiles e industria: 65 %
 - Bosques y uso de la tierra: 11 %
 - Metano: 16 %
 - Óxido nitroso (N₂O): 6 %
 - Otros: 2 %

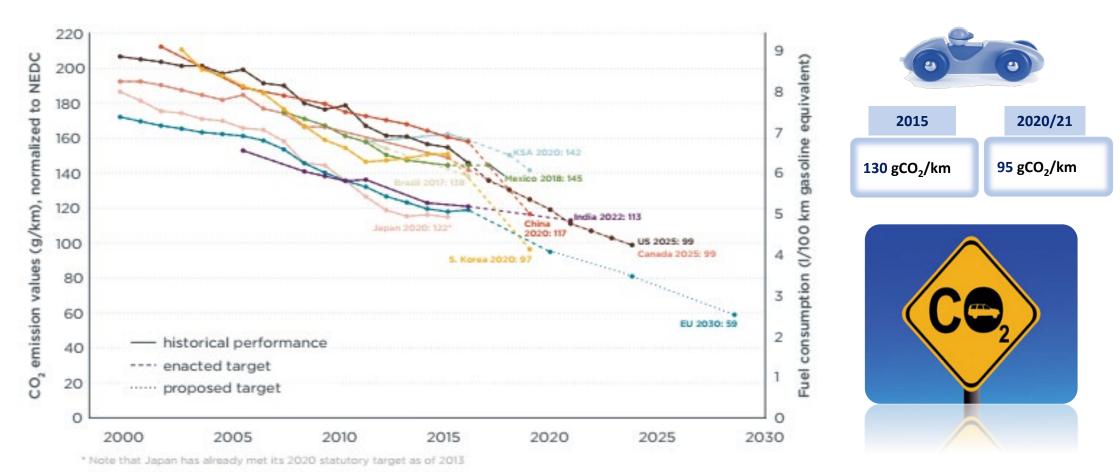
% emisiones CO₂ Europa

- Los grandes entornos urbanos tienen un problema de calidad del aire
- Pero también en ambientes rurales hay contaminación
- Pero la movilidad es solo una parte del problema

ORIGEN DE LOS CONTAMINANTES DEL AIRE				
En porcentaje				
	NO_x	PM_{10}	PM ₂₅	
Transporte no terrestre	7	2	2	
Transporte terrestre	39	11	(11)	
Producción y distribución de energía	19	5	5	
Comercio, hogares e instituciones	14	42	57	
Energía para la industria	12	5	7	
Usos y procesos industriales	3	17	10	
Agricultura	5	15	4	
Basura	•	3	4	
Otros	0	2	2	

Fuente: Agencia Europea de Medio Ambiente

- Reducir emisiones de CO₂
 - Reducir consumo de combustible
 - Aumentar rendimiento de sistema la propulsión:
 - Electrificación e hibridación
 - Eficiencia en la conducción
 - Mejoras del vehículo: resistencias al avance y peso
 - Vectores energéticos con emisiones netas de CO₂ muy baja o nula
 - Combustibles de origen renovable
- Reducir emisiones contaminantes primarias y secundarias que afectan a la salud pública
 - Medio urbano
 - Partículas (PM)
 - Óxidos de nitrógeno (NO_X), sobre todo NO₂
 - Ozono (O₃)
 - Contaminación transfronteriza
 - Partículas finas < 2,5 μm (PM_{2,5})
 - Óxidos de nitrógeno



NO_v + PM₁

Reducción emisiones CO2

Fuente: ICCT (International Council on Clean Transportation) – January 2019

Vehículos ligeros (turismos y furgonetas)

	Reglamento UE 2019/631 (abril 2019)		Com	Comisión Europea: Propuesta Fit for 55 (julio 2021)	
Reducción CO ₂ respecto a 2021 (%)	2025	2030	2025	2030	2035
Turismos	15	37,5	15	55	100
Furgonetas	15	31	15	50	100

Estas condiciones requieren un elevado grado de propulsión eléctrica (eléctrico puro e híbrido enchufable) y alternativa

Vehículos industriales (camiones y autobuses)

	_	nento UE (junio 2019)		Borradores (*)	
Reducción CO ₂ respecto a 2019-20 (%)	2025	2030	2030	2035	2040
Camiones y autobuses	15	30,5	60	90	100

(*) La Comisión presentará su propuesta el 30-11-2022

- Incentivos para fomento de la propulsión eléctrica
 - En países con pequeña penetración los fabricantes tendrán un multiplicador de la bonificación de 0,7 por cada vehículo limpio vendido hasta alcanzar un 5 % de cuota de mercado

Cambio de paradigma de la movilidad

PARADIGMA ACTUAL

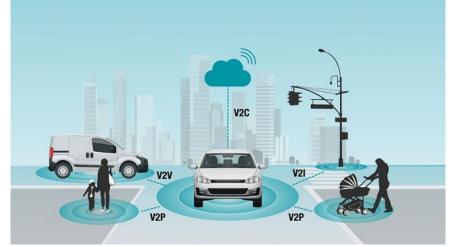
- Movilidad personal basada en vehículos automóviles asociados a autonomía, confort, condición social...
- Concepto de propiedad muy arraigado
- Movilidad de mercancías con vehículos con diferentes tipologías y capacidades de carga
- Basados en motor de combustión y combustibles fósiles
- Los costes externos los asume la sociedad
- Los actores fundamentales son los fabricantes de vehículos

VECTORES PARA EL CAMBIO

Cambio de paradigma de la movilidad

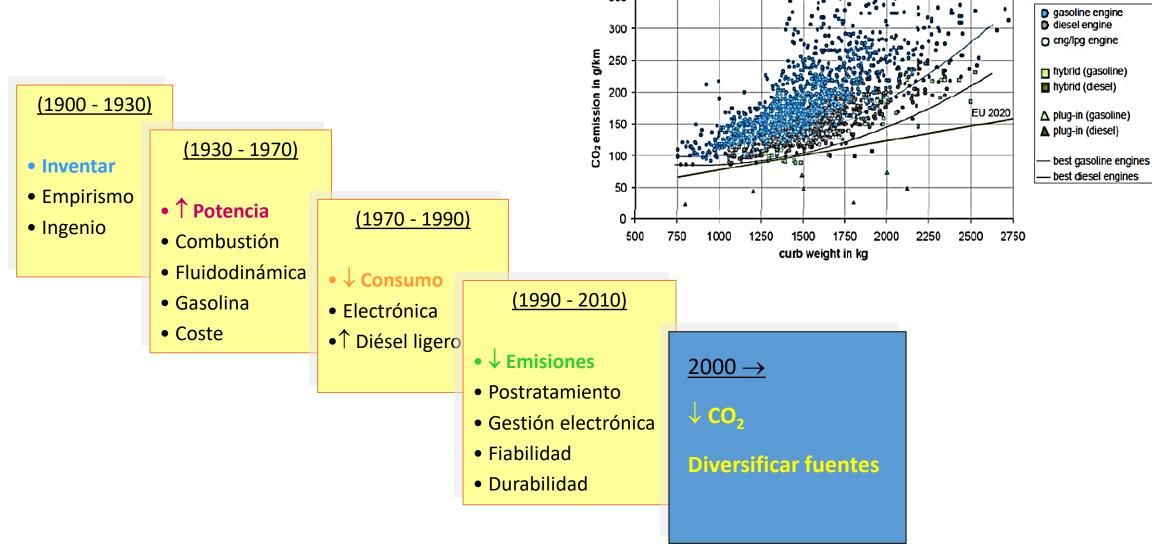
- VECTORES PARA EL CAMBIO
 - Incrementos de urbanización y movilidad
 - Diversificación de los medios y tipos de movilidad
 - Nuevos servicios de movilidad
 - Uso eficiente de los vehículos (compartición)
 - Conciencia medioambiental
 - Descarbonización y mejora de la calidad del aire
 - Energías limpias y diversificadas
 - Irrupción de nuevas tecnologías

INDUSTRIALES Cambio de paradigma de la movilidad

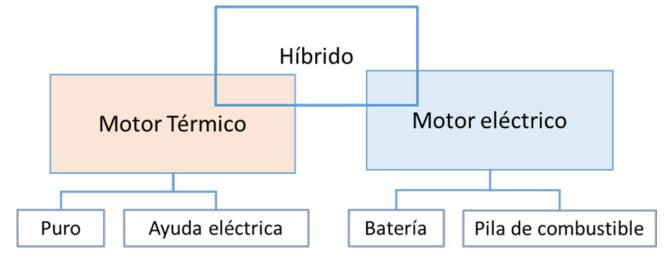


NUEVO PARADIGMA

- Electrificación y nuevos sistemas de propulsión
- Movilidad autónoma y conectada
- Nuevos modelos de movilidad
- Nuevos actores



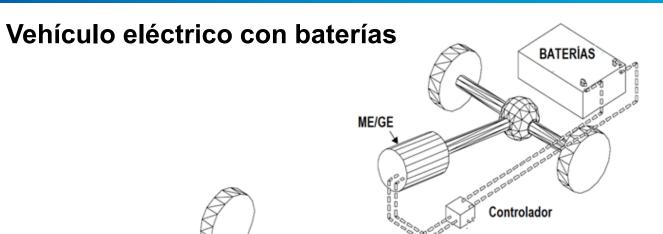
Propulsión y fuentes de energía en automoción

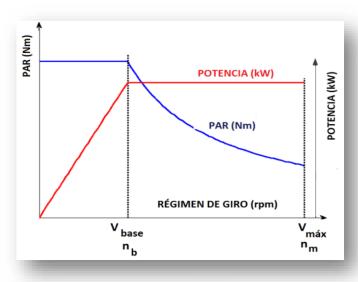


Sistemas de propulsión

D*I

- Sistemas de propulsión
 - Motor térmico
 - Monocombustible
 - "Dual Fuel"
 - Bi-combustible
 - Poli-combustible
 - Motor eléctrico
 - Batería
 - Pila de combustible
 - Mixto
- Grado de electrificación creciente
 - Híbrido moderado (mild hybrid)
 - Híbrido integral(full hybrid)
 - Híbrido enchufable (plug-in hybrid)
 - Eléctrico de autonomía extendida (range extended)
 - Eléctrico puro
 - De pila de combustible


Conclusiones parciales


- Actualmente ya existen vehículos de cada categoría
- El futuro será muy variado
- No es posible asegurar que el vehículo eléctrico será la única solución
- Sistemas de propulsión ↔ Fuente de energía

Ventajas de los VE	Requerimientos de los VE para su penetración en el mercado	
CO ₂ neutro utilizando energía renovable	Aseguramiento de un nivel autonomía adecuado	
Alto rendimiento del sistema propulsor	Seguridad en el sistema de almacenamiento de energía eléctrica	
Bajo coste de operación	Amplia disponibilidad de puntos de carga	
Funcionamiento silencioso	Tiempos de carga aceptables	
Posibilidad de utilización de la red eléctrica existente	Disponibilidad de energías renovables para el suministro a vehículos	
Emisiones cero en el punto de uso	Reducción del coste inicial de las baterías y otros componentes.	

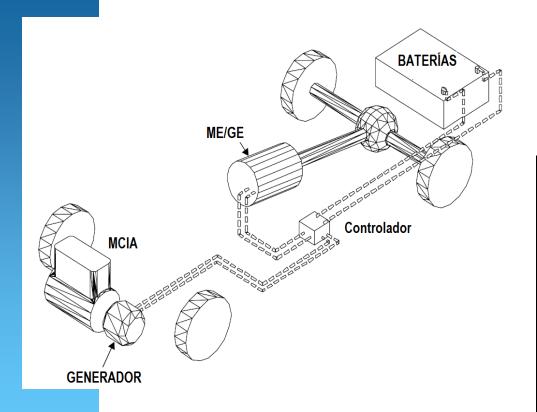
Sistemas de propulsión

Vehículo eléctrico con baterías

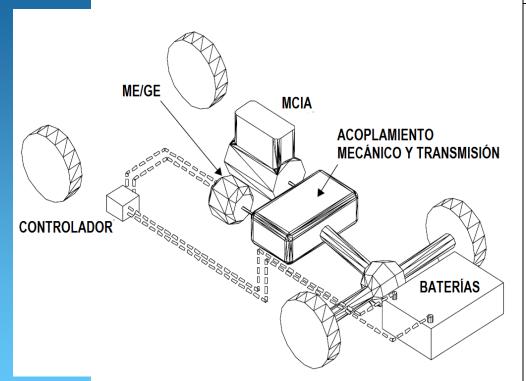
BARRERAS

- Niveles de autonomía (densidad de energía) y precios
- La oferta actual de vehículos no satisface la totalidad de segmentos de demanda
- Beneficios ecológicos dependen del mix energético
- Las infraestructuras de recarga muy insuficientes

• INCERTIDUMBRES


- Plazos para el desarrollo del parque
- Nuevas tecnologías de baterías, celda de combustible ..
- Uso o reciclado de baterías
- Impactos geopolíticos. Este-Oeste
- Impactos industriales. Nuevos actores
- Impactos en el empleo asociado al Sector

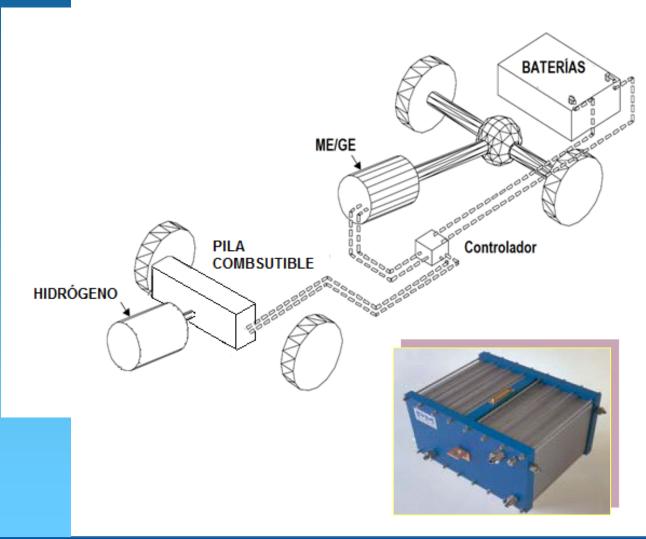
Vehículo híbrido serie


Configuración	Ventajas	Inconvenientes
SERIE	 Selección del punto de funcionamiento del MCIA (rpm, par) Reducción del tamaño del MCIA Tracción eléctrica. Amplio funcionamiento en modo puramente eléctrico. Buena recuperación de la energía en frenado. Fácil instalación de los componentes. Fácil gestión de la transmisión. 	 Bajo rendimiento energético. Necesidad de utilizar dos máquinas eléctricas y dos electrónicas de potencia (coste, masa, vol.) Imposibilidad de utilizar el MCIA para tracción. Modificaciones significativas comparadas con el tren de potencia convencional. Paquete de baterías grande (coste, masa, vol.)

Vehículo híbrido paralelo

Configuración	Ventajas	Inconvenientes
PARALELO	 Buen rendimiento energético. Pocas modificaciones comparadas con el tren de potencia convencional. Posibilidad de tracción con MCIA. Menor número de componentes. Menor paquete de baterías. 	 Amplio rango de funcionamiento del MCIA Los transitorios del MCIA no eliminados totalmente. Menores posibilidades de reducir el tamaño del MCIA. Poca o nula tracción eléctrica. Recuperación de la energía durante la frenada más limitada.
Baterías Inverter MCIA TMCIA TME	Trans.	 Gestión compleja de la transmisión (cambios de modos, dinámica). Dificultad de instalar los componentes. Acoplamientos mecánicos complejos.

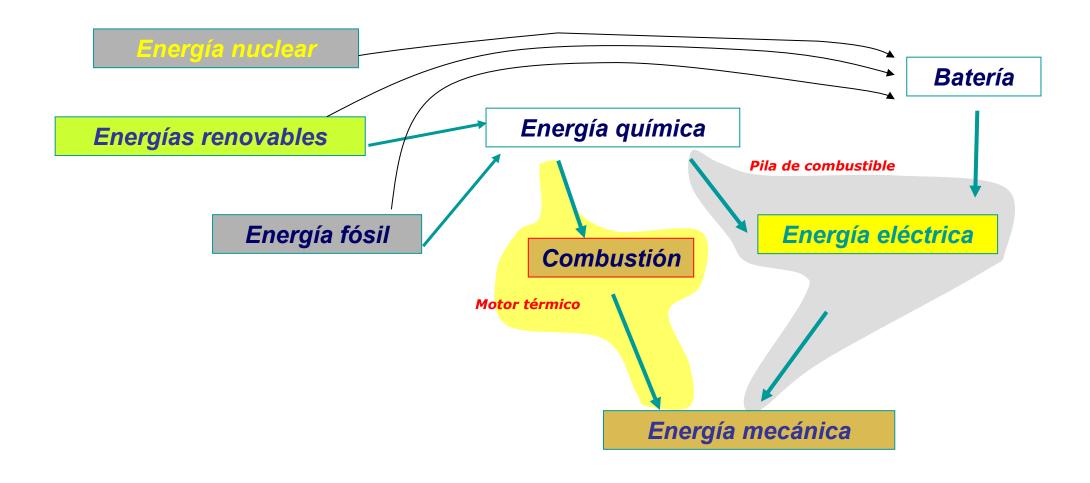
ωΜCΙΑ



Sistemas de propulsión

Vehículo eléctrico con pila de combustible

VENTAJAS


- Bajo impacto medioambiental: emisiones cero en punto de uso
- Ruido muy reducido
- Elevado rendimiento
- Bajo mantenimiento

INCONVENIENTES

- Producción y almacenamiento del hidrógeno
- Alto coste de fabricación y operación
- Infraestructura

- Fuentes de energía embarcada (Vectores energéticos)
 - Hidrocarburos líquidos
 - Origen fósil
 - Sintéticos (origen renovable)
 - Hidrocarburos gaseosos
 - Origen fósil
 - Origen renovable
 - · Biometano, biopropano, ...
 - Biocombustibles
 - Hidrógeno
 - Derivados del hidrógeno
 - Amoniaco
 - Metanol
 - e-fuels

Conclusiones parciales

- Tendencia a eliminación de combustibles de origen fósil, gas natural medio plazo
- Nuevos combustibles sintéticos de origen renovable sin emisión de CO₂ neta
- Batería para cortas distancias
- Pila de combustible

 → motor térmico
- El desarrollo del hidrógeno necesita red de distribución

Bioetanol

Alcohol producido a partir de la fermentación del azúcar que se encuentra en cereales como el maíz, la cebada o el trigo, en la caña de azúcar, en la remolacha, etc.

COMPORTAMIENTO DEL BIOETANOL EN MOTORES

- Alto nº octano, lo que permite elevar la relación de compresión.
- Sin emisión de SOx. Reducción global del CO₂
- Alto calor latente de vaporización y baja presión de vapor, lo que dificulta el arranque en frío.
- Poder calorífico menor que la gasolina
- Baja lubricidad y alto poder corrosivo
- A elevadas temperaturas provoca bolsas de combustible vaporizado dentro del sistema de alimentación.
- Reduce las emisiones de CO y HC

Biodiesel

Reacción de transesterificación

TRIGLICÉRIDO + METANOL → ÉSTER METÍLICO + GLICERINA

Sus características físico-químicas se aproximan a las del gasóleo

COMPORTAMIENTO DEL BIODIÉSEL EN MOTORES

- Ligera pérdida de potencia
- Leve incremento en consumo debido a un poder calorífico menor.
- Incompatibilidad con materiales: Caucho, pinturas, etc.
- Menor estabilidad en almacenamiento prolongado en el depósito: Generación de gomas.
- Reducción de partículas
- Aumento de los NOx
- Sin emisión de SOx
- Problema de arranque en frío

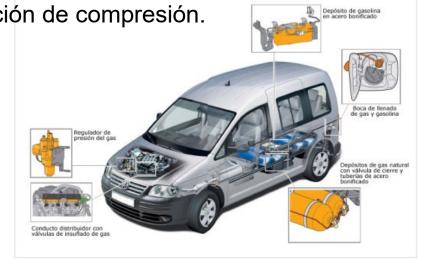
Gas natural

Mezcla de hidrocarburos de bajo punto de ebullición.

El <u>metano</u> es el componente que presenta mayor concentración, con pequeñas cantidades de etano y propano.

El azufre, el nitrógeno y el dióxido de carbono son elementos incluidos en el GN.

Se almacena como gas comprimido, <u>CNG</u>, a presiones de 25 Mpa o bien como líquido, <u>LNG</u>, a presiones entre 70 y 210 kPa a una temperatura de -160 °C.


VENTAJAS:

Su elevado nº de octano (~120), permite aumentar la relación de compresión.

- Bajas emisiones y menos CO2
- Grandes reservas

INCONVENIENTES:

- Baja densidad de energía
- Bajo rendimiento volumétrico
- Necesidad de tanque presurizados

GLP

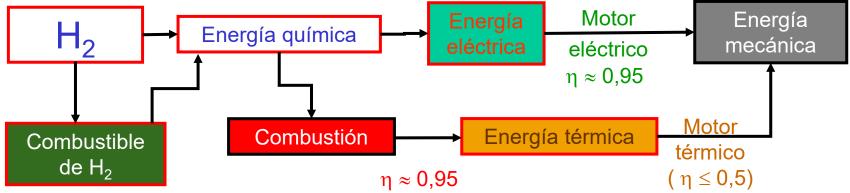
Se obtiene de yacimientos de gas natural y petróleo, así como de la destilación del petróleo. Se compone fundamentalmente de propano y butano

VENTAJAS:

- Bajas emisiones de CO2
- · Bajo contenido en azufre
- Alto número de octano
- Almacenaje sencillo (fase líquida entre 6 y 10 bar a temperatura ambiente)
- Repostaje sencillo

INCONVENIENTES:

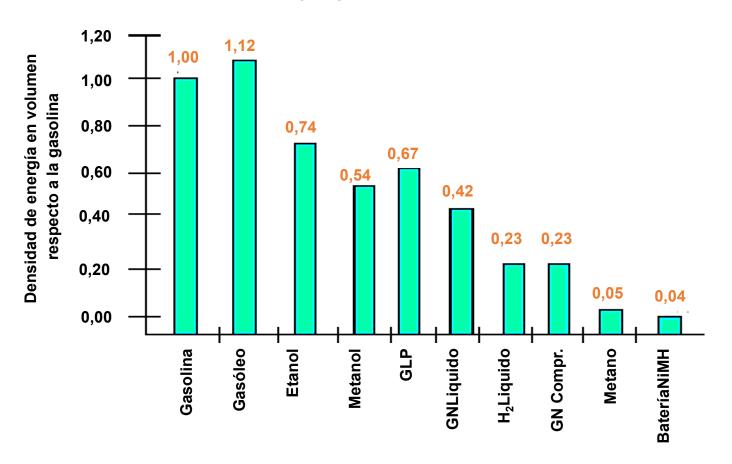
Es más pesado que el aire (sistemas de extracción de zonas bajas cerradas)



Hidrógeno

- Se puede obtener de fuentes renovables y no renovables.
- Se almacena como gas comprimido, a presiones de 35 MPa o bien como líquido, a presión atmosférica a una temperatura de -250 °C.
- Tres vías:
 - Obtención de energía eléctrica: pila de combustible
 - Combustión: motor de combustión interna (MCIA)
 - Combustibles derivados de H₂: electrocombustibles (e-fuels), amoniaco, metanol, etc. M.C.I.

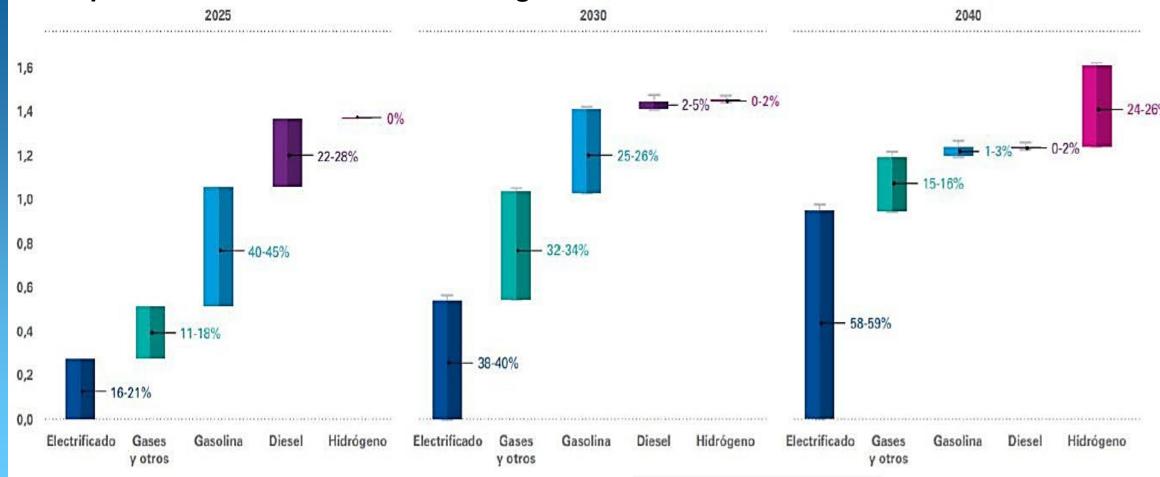
Pila de combustible (PEM: ¿η ≈ 0,60?)


Hidrógeno

- VENTAJAS
 - Elevada temperatura de autoinflamación, lo que permite elevar relación de compresión.
 - Bajas emisiones. Ausencia de CO, HC y CO₂ en el escape. Catalizador para NO_x.
 - Nulas emisiones si se utiliza una pila de combustible.
- INCONVENIENTES
 - Baja densidad de energía
 - Alto rango de mezcla explosiva
 - Bajo rendimiento volumétricos
 - Necesidad de tanque presurizado

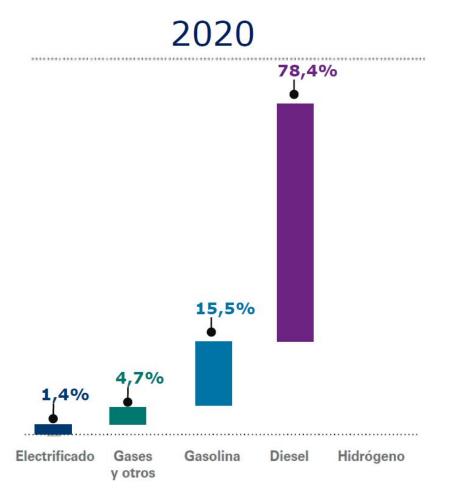
Densidad de energía

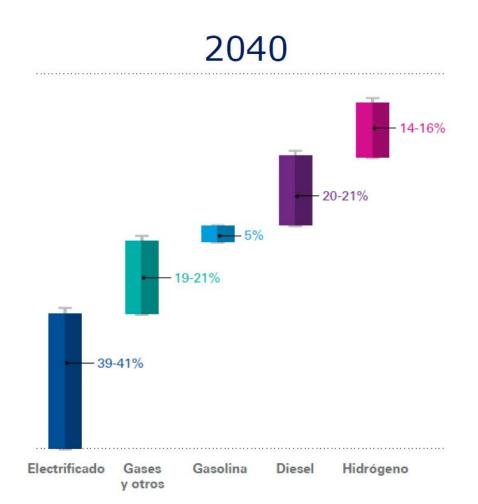
- Concepto: energía disponible por unidad de volumen (Energía/Volumen)
- En vehículos de transporte juega un importante papel



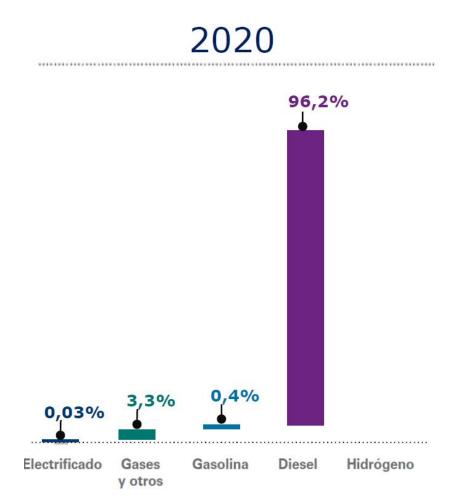
Fuente: KPMG, ANFAC

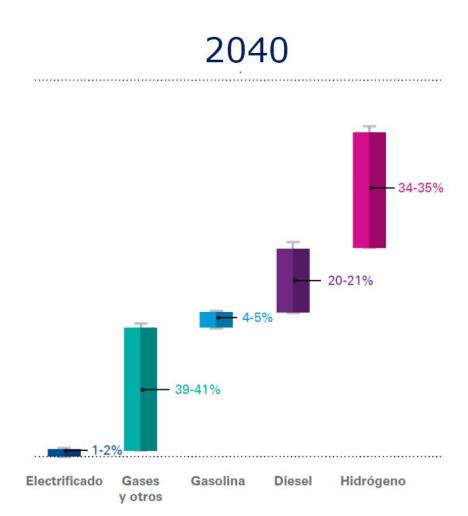
Fuentes de energía


Perspectivas de mercado: vehículos ligeros



Perspectivas de mercado: furgonetas




Fuente: KPMG, ANFAC

Perspectivas de mercado: camiones pesados

Fuente: KPMG, ANFAC

- Medio ambiente:
 - Gases de efecto invernadero → Calentamiento global.
 - Local y regional → Contaminación urbana → Salud pública.
 - Transfronteriza → Efectos a largo plazo.
 - Residuos → Contaminación de aguas y suelos.
- Dos problemas complementarios a resolver:
 - Eliminación de emisiones de efecto invernadero
 - No solo en su utilización sino en su ciclo de vida: fabricación de motores y fuentes de energía + desguace
 - Reducción de emisiones contaminantes
 - Nivel urbano y regional
 - Nivel transfronterizo
- Escasez energética:
 - Final pactado de los combustibles fósiles.
 - Limitaciones de las energías renovables.

Necesario pensar en análisis de ciclo de vida: LCA "pozo a rueda"

Necesario pensar en eficiencia energética kWh/km·pax ó kWh/km·ton

- Diversificación energética:
 - Previsible alto coste de los combustibles fósiles.
 - Dependencia externa
- Futuro medio largo plazo, se investiga:
 - Combustibles evolucionados de origen renovable con motor de combustión
 - Hidrógeno de origen renovable con motor de combustión o con pila de combustible
- Los motores eléctricos (ME) no emiten CO₂ ni contaminantes en uso
 - Vehículo de baterías recargables de la red,
 - Limitaciones: acumulación de electricidad + recarga + emisiones de CO₂ en producción electricidad
 - Vehículo con pila de combustible,
 - Limitaciones: fabricación, distribución y suministro de H₂ renovable + baja densidad energética
- Importante: neutralidad tecnológica en los planteamientos
- Los actuales vehículos aun durarán bastantes años

