

CURSO EJECUTIVO

TITULO: The Energy Transition: Global, European and Iberian region perspective

PONENTE: André Anacleto

Executive Summary

Energy Transition has slowed down globally, and geopolitical context is reprioritizing costeffective solutions over Net-Zero

Spain and Portugal have a privileged position to lead the energy transition in Europe and have a good starting point to reindustrialize

If we overcome the existing challenges, energy transition could have a substantial positive impact on the region

Key trends affecting the new energy transition paradigm

1 Secure, sustainable and affordable supply

- 10-years since the Paris Agreement, geopolitical context is reprioritizing security of supply over Net-Zero in many countries
- Stakeholders have rapidly adopted low-carbon technologies when they are low-cost or support energy security and reliability goals

Volatility

Affordability

Multiple drivers of volatility

- Energy transition: The volatile geopolitical context is opening a wider range of energy transition scenarios
- Energy price volatility:
 High degree of cost volatility, where geopolitical shocks can ignite extreme price volatility, as seen in 2022 gas crisis
- Energy mix: At the same time, the mix is shifting, introducing additional volatility into the system (e.g., Blackouts in Iberia)

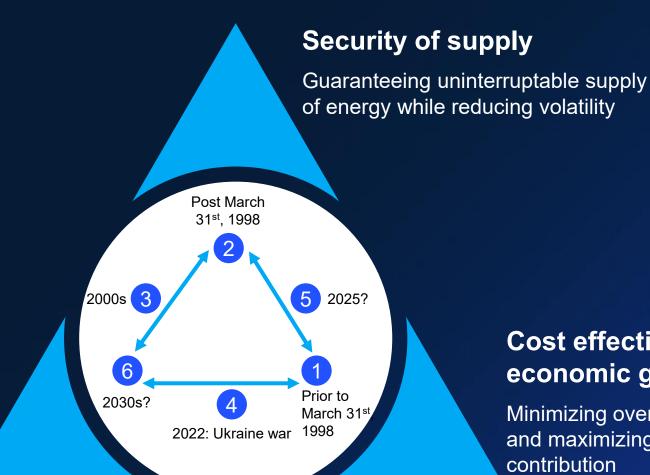
- At present, the price of energy varies greatly between different countries and regions
- Highest average prices can be seen in Europe, where, since the energy crisis, Europe has paid 2-3x more for energy compared to US and Chinese peers
- Countries are reprioritizing costeffective solutions over Net-Zero and pursuing security of supply
- Significant improvements have been made on technology and costs that enable a cheaper renewables deployment

Electrification momentum

- Global electrification is expected to grow at ~3% annually, with economic viability and policy challenges setting different speeds
- Alternative decarbonization pathways to compete based on cost parity to achieve an economically viable solution for hard-to-abate sectors over the next two decades

across regions and sectors

 The future of CCS, hydrogen, and sustainable fuels remains uncertain, reliant on macro context, and policy mandates

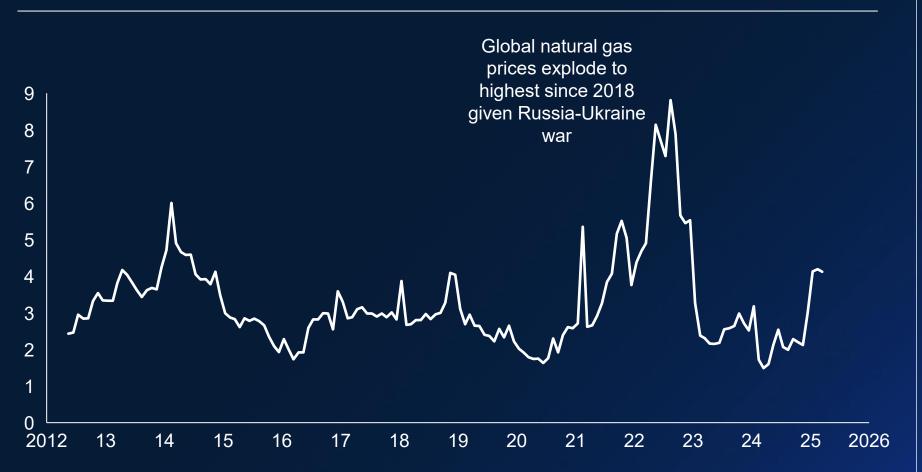

Supply chain under pressure

- Multiple bottlenecks, including supply chain limitations in a fragile international trade context, hinder the scalability of the transition
- Long-term planning required to secure reliable power supply

1. Wall Street Journal McKinsey & Company

1. The new energy transition paradigm implies optimization of mitigation actions on the energy trilemma

Environmental sustainability


Reducing carbon emissions in line with latest political targets (e.g., -55% by 2030)

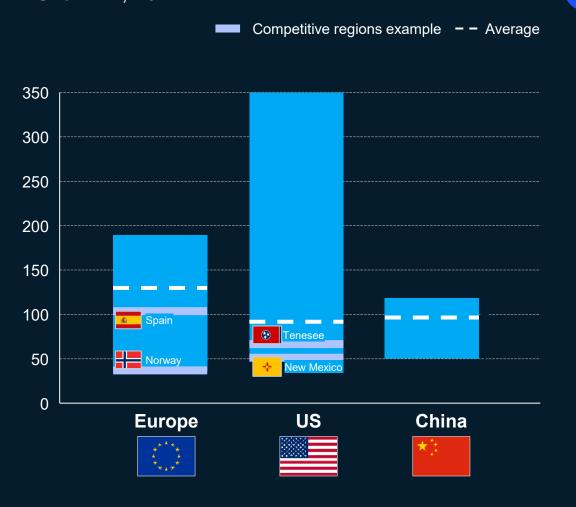
Cost effectiveness and economic growth

Minimizing overall cost for the system and maximizing economic contribution

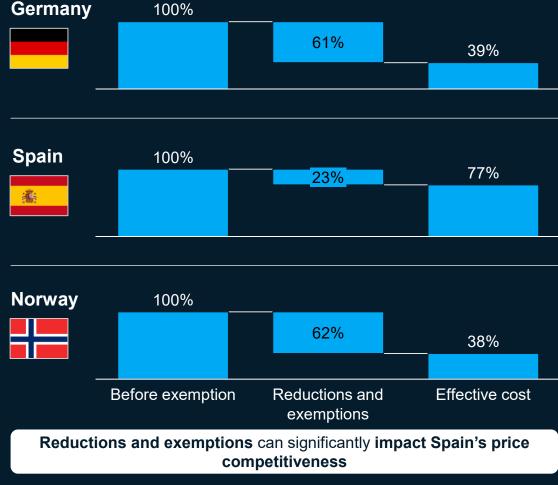
2. Cost volatility: Geopolitical shocks can ignite extreme price volatility, as seen in 2022 gas crisis

Henry Hub historical natural gas spot price, \$/MMBtu

Russian invasion of Ukraine impacted the operation of Russian gas pipelines to Europe and global natural gas prices increases as a result, even in the U.S.

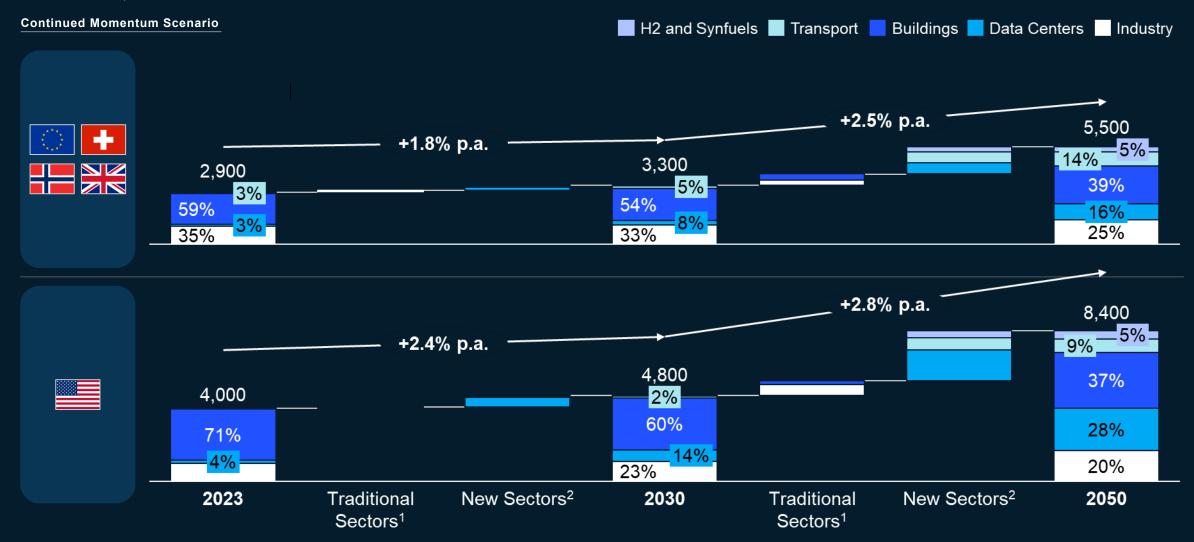

Energy prices significantly increased and drove increased costs across downstream sectors (e.g., heating)

Source: EIA – Henry Hub spot price

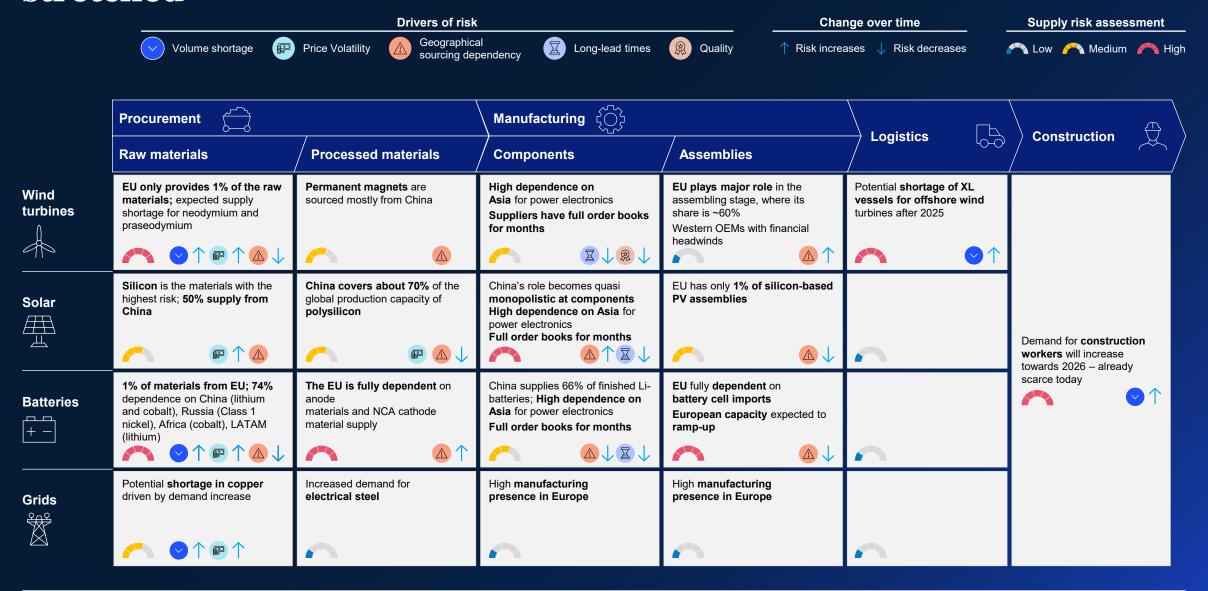

McKinsey & Company

3. Comparison of industrial power prices across regions

Range of industrial electricity prices EUR/MWh, 2024



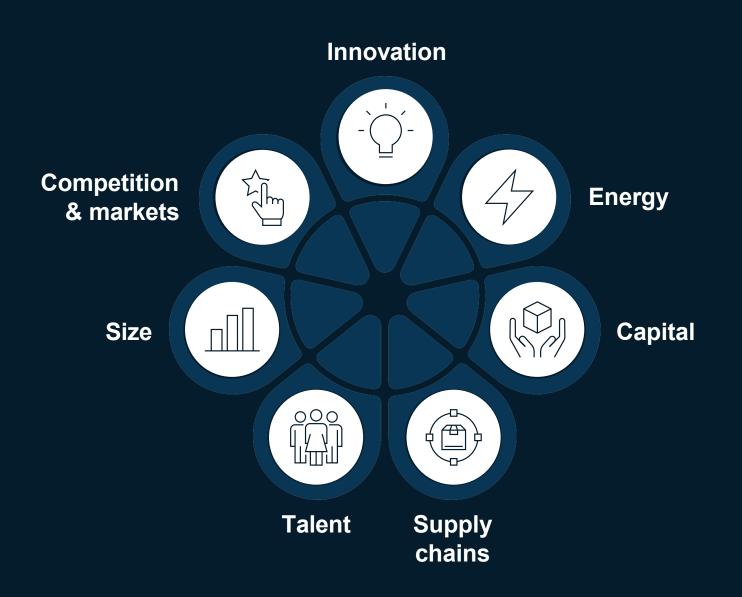
Landed cost of electricity for industrial users EUR/MWh, 2024


4. Power consumption expected to accelerate 2030-50 driven by Data Centers demand

2023-2050, TWh

^{1.} Industry, Buildings | 2. H2 and Synfuels, Data Centers, Transport Source: McKinsey Energy Solutions' Global Energy Perspective 2025, IRENA, IEA

5. Supply chains for key energy transition technologies are stretched


Executive Summary

Energy Transition has slowed down globally, and geopolitical context is reprioritizing costeffective solutions over Net-Zero

Spain and Portugal have a privileged position to lead the energy transition in Europe and have a good starting point to reindustrialize

If we overcome the existing challenges, energy transition could have a substantial positive impact on the region

7 forces are redefining competitiveness for Europe

Within Europe, we have a privileged position to lead energy transition and a good starting point to reindustrialize (1/2)

		Comparison	vs. O
4	Low renewable energy prices as key to remain competitive in green industries	20%	Lower cost for renewable electricity generation in Spain vs. Central Europe
	Attraction of highly specialized talent essential to drive innovation and deployment of projects	+1.4	Engineers and scientists in Spain & Largest pool in the European Union
	Capital deployment as key to create value within the energy transition	2nd B	argest beneficiary in Europe of European Investment sank energy transition fund in 2022
	Need to ensure supply chain security as rising disruptions affect trade patterns	2nd La	argest car nanufacturer in Europe Largest steel producer in Europe
	Larger-sized companies needed to enable economies of scale and drive profitability		unish companies present on the Top10 for the largest O&G companies better prepared for the Energy Transition ¹
- 0-	Lead on innovation as tech innovations challenges current industrial models	12 %	Increase in Spain's R&D expenditure in 2022 compared to 2021 while the EU registered -4,5% decrease
	Regulation and industrial policies as an enabler to empower competitiveness	9 th	Rank position (out of 69) of Spain on the OECD FDI Regulatory Restrictiveness Index 2020, indicating low restrictions on international investments

We can lead the way, aiming at an industrial reemergence, thanks to its leading position to capture green growth and deliver its economic competitiveness

Within Europe, Spain has a privileged position to lead energy transition and a good starting point to reindustrialize (2/2)

competitivenes					
Leading					
On-track					
Lagging					

Competitiveness dimension		Indicator			
(Ψ)	Energy OPEX	Renewables share			
	OPEX	Solar LCOE			
		Onshore wind LCOE			
		(H) Cost of green hydrogen ¹			
09	Input materials	Lithium mining capacity			
	OPEX	Biogenic CO2 supply			
	Industrial base	Steel production			
	CAPEX	Vehicles produced			
		Refining capacity			
	Existing	Annual container port traffic			
	infrastructure CAPEX	^{ដ៏} ក្ម Pipeline export capacity²			
		LNG terminals capacity ³			

^{1.} Considering current LCOEs for the best locations within the countries | 2. Considering the maximum of exports and imports pipeline capacity | 3. Only considering large-scale LNG terminals Source: Ember, Enerdata, IRENA, McKinsey LCOE model, FCHO, Greenea, Fischer Data, S&P Platts, IHSM DCP, EUROFER, WorldBank, McKinsey refining capacity database, MineSpans, IHS Markit, GLE, entsog

Spain has a lifetime opportunity of re-industrializing on the back of competitive clean energy

A. Energy play – Lead on low-cost green energy production

Electrification and Renewables

Renewable molecules and circular materials

Green Hydrogen and derivatives Sustainable fuels Biogases

Modernization of power systems and resiliency investments

Others...

Low cost of decarbonized energy in Iberia

B. Industrial play – Scale up existing industries and develop new ones through decarbonization levers

Data Centers

Electric Vehicles & Battery Ecosystem

Industry Competitiveness and Decarbonization

Defense

Others...

Energy play – What is the size of the opportunity until 2030?

RES power capacity increase, to ~140-150 GW

Up to 1.7X

vs current capacity

Green H_2 production increase, to $\sim 0.6-1.1$ mtpa

Up to 2.5X1

Biomethane production increase, with total capacity of ~15-25 TWh per year

Up to 11X²

Biofuels supply increase, with total production capacity of up to ~2-3mtpa

Up to 3X

CAPEX needed to become Europe's lowest cost energy provider

~160 Bn€

^{1.} Considering green (1.1mtpa) and grey (0.4mtpa) hydrogen production in 2030 versus grey (~0.6 mtpa) hydrogen production in 2023 | 2. Considering 0.5TWh of operational capacity and 1.3TWh under construction as current capacity | 3. Combined CAPEX required for both Biomethane and Biofuels opportunity

Value chain play – What is the size of the opportunity until 2030?

Up to 4 p.p

potential EBITDA uplift in industries, due to ~20% lower RES costs

Up to 2X

potential RES industrial consumption increase vs. 2022, +25-30 TWh

~40+ Bn€

of CAPEX needed to deploy and scale **5** new industries; incl. green steel, ammonia, EVs, battery ecosystem

Executive Summary

Energy Transition has slowed down globally, and geopolitical context is reprioritizing costeffective solutions over Net-Zero

Spain and Portugal have a privileged position to lead the energy transition in Europe and have a good starting point to reindustrialize

If we overcome the existing challenges, energy transition could have a substantial positive impact on the region

Challenges on bankability, regulation and system stability found across key areas

Energy play key areas cross-topics

Non-exhaustive

Lack of cost competitiveness

- x2-5 times costlier green H2 solution vs conventional fossil alternatives for some applications
- Slower-than-expected H2 cost reduction trajectories (exp. 4-5.5€/kg by 2030); limited tech maturity
- +1-4k USD/t costlier biofuels than current fossil alternatives

Highest relevance for:

Electrification 📵 Biofuels 🖾 Biomethane 🚱 Hydrogen

Regulatory burden

Tax burden for decarbonization levers vis-à-vis other countries

- Long and **complex permitting processes** (up to 4 years) with +17 frameworks, one per CCAA
- **Inclear HVO demand**, uncertain regulatory outlook from new feedstock additions, and threats from non-EU markets
- Strict EU Delegated Act requirements for green H2 production and uncertain RFNBO non-compliance penalties

System instability

Insufficient grid investments to handle the increase of both demand and RES

- Limited firm capacity availability and uncertainty of future **RES** profitability
- Power grid capacity constraints for new connections
- Lack of transparency over existing distribution grid and injection points

Financing hurdles

- 20-80% higher upfront costs of EVs vs ICE
- High uncertainty regarding long-term demand, feedstock availability, and technology maturity
- Limited willingness for long-term offtake agreements

5 key unlocks could accelerate Spain's Energy-play leadership translated into specific actions across themes

Energy play key areas cross-topics

Non exhaustive list of examples

Effective incentives schemes

Deploy effective incentive schemes to close the cost competitiveness gap between green solutions and fossil-based alternatives

Clear and stable regulation

Provide effective (simple and flexible) and stable (long-term certainty) regulatory frameworks to ensure projects' predictability and robustness

Faster and smoother permitting

Reduce administrative burdens and shorten permitting processes (e.g., one-stop-shops, homogenization) to minimize long permitting periods

Highest relevance for: 🤣 Electrification 📵 Biofuels 🖼 Biomethane 🚱 Hydrogen

Strengthen project bankability

Develop strong project cases (e.g., long-term agreements, alliances) to ensure robust and stable financing schemes

Form alliances (e.g., technological partner, suppliers, equity partner) with capital contribution capabilities

Substantial grid deployment

Plan and deliver efficient grid deployment programmes to ensure coordinated uptake between projects and electrification increase

Plan grid capacity
enhancements (both for
RES and electrolyzers) in
line with advanced H2
announced projects

This could have a substantial impact on the Spanish society...

Impact on GVA

(% 2022 GDP)

Increased exports (% 2022)

Up to +15%

Total Jobs, ...of which, qualified positions, (% 2022)

Up to +10%

Additional state income,

~200k +8-9%

GVA impact of up to 15%, depending on the level of reindustrialization or nationalization of local industry adding +1Mn jobs to the sector

Exports could **up to 10%**, fueled by an increase in the share of exports in high-value products

An **added impact** in the **income** for the **Spanish state** of up to 9% of current state income, including VAT, corporate, and individual taxes

...creating ~1 million jobs, and generating ~15% of GDP by 2030

Vertic	cal	Impact on GDP % of GDP in 2022	Share of skilled a unskilled jobs	nd	Total jobs, #k
7-0	EVs	~6.0	85	15	720
#=	Batteries	~1.6	75	25	290
	Power ³	~1.2	65 39	5	50
H	Green hydrogen	~1.0	70 3	80	35
	Green heavy ind. ²	~0.4	85	15	20
8	Renewable molecul and circular materia	es ls~ 0.3	70 3	80	20
A second	Lithium ref. & min.	~0.2	90	10	20
	NetZero reforms ⁴	~2.2	N/A		-
Total		~15%			1 160

% Non-qualified % Qualified

Main focus on battery and electric vehicle value chains with the reconversion of factories playing a decisive role

Creation of +200k
qualified jobs in Spain as
new green industries set
up shop and traditional
ones get reindustrialized

Impact of up to +15% in value created (GDP) by 2030

Including biomethane, biofuels, and synthetic fuels | 2. Composed of green ammonia and green steel production, as well as CCUS as a facilitator | 3.
 Implementation of renewables, mainly from solar photovoltaics, onshore and offshore wind, and battery storage | 4. Including renovations to buildings, transport infrastructure, electrification of industry, and upgrading of machinery

IMUCHAS GRACIAS!

